
Automated Consultation for the Diagnosis of Interplanetary
Telecommunications

A.G. Quan, U.M. Schwuttke, J,S. Herstein, and

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

=. alan@puente.jpl. nasa.gov

D.J. Atkinson

submitted to the AAAI Conference on Innovative Applications of Ar&ificia/ Intelligence (IAAI-94)

INTRODUCTION
SHARP (Spacecraft Health Automated Reasoning Program) is a knowledge-

based consultant for diagnosing problems in NASA’s Deep Space Network (DSN) tele-
communications link in near real-time. It has been under development for seven years,
gradually transitioning from a research prototype to an operational system.This paper
describes most recent version, which is an operational system used by spacecraft mis-
sion controllers; previous versions are described elsewhere [Atkinson 1992, Martin
1990]. The transition of this system to an operational environment involved the design
and implementation of a generic architecture and a some application specific customi-
zation for its first intended long-term end-user, NASA’s Mars Observer mission.
Subsequent loss of the Mars Observer spacecraft provided an opportunity to validate
claims for the generality of this tool, with an immediate port to the Galileo mission,
(launched in 1989 and scheduled to enter Jupiter orbit in 1995). This port was achieved
with less than ten percent of the effort required for the original Mars Observer imple-
mentation, as only mission specific components of the system were affected.

SHARP has been developed for use by the multimission control team at the Jet
Propulsion Laboratory (JPL), for detection and analysis of spacecraft and ground system
problems. The telecommunication (Telecom) downlink provides a means of communi-
cation between the spacecraft and ground, and includes the Telecom subsystem on the
spacecraft and components of the DSN. Telemetry data arrives at a DSN station such as
the one shown in Figure 1. Stations are located in the U.S, Australia, and Spain. Data
from these stations is sent to JPL for monitoring and analysis. There are two kinds of
spacecraft telemetry data: the science data, which contains actual data obtained from
science instruments on the spacecraft, and the engineering data which provides the
health and status of the spacecraft subsystems. There is also a third kind of telemetry

1

.

known as monitor data, which provides information about the DSN, SHARP concerns
itself only with the latter two types of data. -.

SHARP assists the mission controller responsible for quick-look Telecom analysis
in routine operations by automatically detecting degradation in the Telecom link, notifying
the mission controller, isolating the cause through interactive consultation, and recom-
mending corrective action. In past interplanetary missions, these capabilities have been .
provided by a full-time human analyst with expertise in spacecraft telecommunications.
More recent missions have not been able to fund full-time telecommunications support.
As a result, there has been an increased need for automated and intelligent tools that can
substitute for a human specialist by providing interactive consultation to augment the
general knowledge of the mission controllers. SHARP answers this need by implement-
ing domain expertise and embedding artificial intelligence techniques for diagnosing
anomalies in a near-real-time monitoring system.

THE APPLICATION DOMAIN: MISSION CONTROL AND TELECOM LINK
ANALYSIS

The responsibility of the Mission Control Team is to coordinate and control space-
craft flight operations, transmitting commands to the spacecraft and performing real-time
monitoring of spacecraft performance, the telecommunications link, and the Ground Data
System. The Mission Control Team is also responsible for correcting spacecraft prob-

2

*.

Iems by issuing commands to the spacecraft. Telecommunication anomalies occur fre-
quently, interrupting the transmission of data from the spacecraft, Detection and
correction of the anomalies requires coordinated monitoring and diagnosis of both the
spacecraft and Deep Space Network telecommunications systems. Without SHARP, this
activity would still be performed manually, requiring a mission control team member to
first detect that a problem exists by monitoring key telemetry values and noticing when
they stray outside predetermined tolerances. Once the telemetry symptoms of the prob-
lem are discovered, a Telecom domain expert is consulted. The expert attempts to
diagnose the cause of the anomaly based upon past experience, detailed knowledge of
the telecommunications system, and examination of other related telemetry data as well
as non-telemetric data such as the schedule of spacecraft events. After the cause of the
anomaly is deduced, the expert must then decide what actions to take in order to correct
it, if possible. This process can be rather time consuming, depending on the nature of the
anomaly, the availability of the Telecom expert, and whether the initial corrective action
chosen by the expert is effective.

Dependence upon a domain expert for anomaly diagnosis and recovery has two
major drawbacks. First, this requires that an expert be on call 24 hours a day, since
anomalies can occur at any time. The timeliness of an expert’s response to a problem
can be critical for recovering important data, or in the extreme case, saving a spacecraft.
Secondly, when the experts retire, their skills are lost. The accumulated expertise of
mission operations personnel is an important resource which should be preserved rather
than recreated every time a senior engineer leaves the flight project. SHARP is designed
to serve as an automated Telecom consultant for mission controllers, offering the
problem-solving ability of a human expert for well-understood telecommunications
anomalies. In this capacity, SHARP allows fast response time in anomaly diagnosis and
correction, and preservation of mission expertise for the entire duration of a mission.

DESIGN AND IMPLEMENTATION

SHARP implements Telecom domain expertise and applies artificial intelligence
(Al) techniques for diagnosing anomalies in the Telecom downlink. This is accomplished
by examining relevant telemetry data from both the DSN and the spacecraft. If an anom-
aly is detected, SHARP uses knowledge-based analysis to diagnose the problem and
provide a recommendation for corrective action. The SHARP system is composed of
three prima~ modules, as shown in Figure 2: a telemetry communication interface to
read telemetry from the ground data subsystem, a rule-based expert system to diagnose
anomalies, and a graphical user interface (GUI) to display telemetry alarms and diag-
nostic messages.

THE TELEMETRY COMMUNICATION INTERFACE
The telemet~ communication interface reads telemetry from the ground data sys-

tem (GDS) and passes it to the GUI and knowledge base. It is composed of a
SHARP-to-GDS telemetry server, an expert system message interface layer, and a GUI

3

Expert System

GUI + +. *

Exwrt GUI XlMotif

Interface

-’r”
Pi~~h=g-=hEtfi~e-o-flhe-SKAR-P-s"jsteni------------"-

message interface layer. The telemetty server obtains raw telemetry data in ASCII from
the GD-S via a UNIX pipe and converts it to a format for use by the knowledge base and
GUI. The data retrieved from the GDS is in the form of text lines which are written to
either a first-in-first-out queue (FIFO) or a disk file. The formatted lines can then be dis-
tributed to a maximum of five clients. The telemetry interface accepts UNIX socket
connections from the expert system and the user interface ailowing interprocess

communication. When the knowledge base requests data, the expert system message
- interface layer reads the formatted telemetry data from the server and passes it to the

expert system. The formatted telemetry can also be sent directly to the GUI through a
connection to the SHARP-to-GDS telemetry setver,

THE GRAPHICAL USER INTERFACE
The GUI provides the interface between SHARP and the end-user, and has been

designed according to the needs to the mission control end-user who is required to per-
- form a large number of functions in addition to monitoring the Telecom link between

ground and spacecraft, The user interface is a mouse driven, Motif-based GUI consisting
of the three resizable windows shown in Figure 3. These include a status window con-
taining alarm and message status counters and a graphical data quality indicator, an
alarm and message summary window, and a utility window for viewing diagnostic mes-
sages, telemetry values, and other information. The status window acts as the main
window and is the only window visible at start-up. To conserve screen real estate, the
window begins in a reduced form displaying Summary and Utility push buttons to pop Up
corresponding additional windows, a Show All button to display all windows, and a Status
button to toggle back and forth between the main window’s compressed and expanded

4

=.

states.

When an anomaly is detected by the expert system, the Status button turns red.
The color change is accompanied by a beep to alert the user. When the status button is
pressed, the window expands to display the Alarm and System Status counters and the
data quality indicator. Each counter consists of two fields, one displaying the time of the
most recent reset, and the other the number of anomaiies the expert system has detect-
ed since the last time the counter was reset. When the expert system detects an
anomaly or sends a status message to the GUI, the counter fields will turn either red in
the Alarm Status display to signal an anomaly or yellow in the System Status display to
signal a system message and the corresponding count field will be updated by one. The
user can manually reset a single status counter by selecting the Reset button, thereby
resetting the counter to zero, resetting the counter time to the current system time, and
converting the counter fields to their normal color. The Ack (acknowledge) buttons
change the counter fields back to their normal color only. The Reset and Ack buttons in
the Alarm Status display will also change the Status button at the top of the display to its

;igue 3. The windows of the graphical user interface.

5

non-alarm color. The Status window also contains a graphical data quality indicator
which consists of a four-part scale and slider button whose position and color indicate the
quality of the telemetry currently being received (from “Noisy” to “Error Free”).

The Summary button pops up the Summary window, which is comprised of two
scrollable paned windows that display brief one-line descriptions of the anomaly and in-
formational messages, These messages are provided by the expert system. When the
user double clicks on an anomaly message in the alarm message summary window, the
Utility window pops up and displays a complete diagnostic message describing the
anomaly and a recommendation for corrective action. The user may also view multiple
diagnostic messages by selecting one or more anomaly messages and pressing the Di-
agnosis button: this pops up the Utility window and displays the information in the
workspace. The user can also press either the Alarms or Messages buttons in the Sum-
mary window to pop up and display more detailed information pertaining to the messages

. - in the Utility window workspace.

The Utility window is a scrollable user workspace area dedicated to displaying
information of current interest to the user, such as diagnostic messages, alarm or system
summary lists, or a table of telemetry data. The SOE button at the bottom of the window
launches the Sequence of Events (SOE) file viewer and editor, which enable the analyst
to see the scheduled spacecraft activities integrated with information from the DSN. The
Data button displays a table of incoming telemetry channel data including columns for the
channel type and number, the symbolic description of the channel (mnemonic), the time
tag of the telemetry, the engineering value, the data number, and the predicted value
(predict) for those channels for which predicts are available. ‘ -

DATABASE FILES
Certain data that is required by the knowledge base originates in the predict files

and SOE files. Two C4SAM (indexed sequential access method) database files are
maintained, one for predict data and one for SOE data. A set of C functions invoked from
the expert system access these databases to facilitate the retrieval of information. When
SHARP is initialized, the SOE files in the directo~ of SOE data are processed to extract
information concerning specific events that is used by the knowledge base, The data is
compounded into a single C-ISAM SOE database file for easy retrieval when the data is
requested. Also at initialization, the data in the predict files for each DSN station are
transferred into a C-ISAM predict database file. Every ten seconds, the directories con-
taining the SOE data and predict data are checked for added files that are newer than the
corresponding C-ISAM file. If a newer SOE file is detected, the current C-ISAM SOE file
is destroyed and re-created using all the SOE files in the directory. If a newer predict file
is detected, the relevant contents of that file are added to the C-ISAM predict file.

THE KNOWLEDGE BASE
The SHARP knowledge base embodies the diagnostic logic of a Telecom expert.

This domain knowledge was supplied by a senior Telecom analyst in the form of a binary
decision tree. Each time a complete set of telemetry is received from the Ground Data
System, the top Ieve node in the decision tree is evaluated. Based upon the value of the

6

.

data examined at that node, one of two branches is taken to the next node in the tree.
This process continues until a leaf node is encountered, at which time the anomaly
causing the problem is obtained, along with a recommendation on how to fix the problem.

At each node one or more data values is examined, This data can come from one
of several sources, including the telemetry, the predict database, and the SOE database.
Sometimes the data is not directly available and must be derived or calculated from other
data. Sometimes the data value is not available from any on-line data source (e.g., the
weather condition at the DSN station). In this case the user must be asked to supply the
value of the data. A pop-up window appears with a question for the user at the top of the
window and a menu of possible answers below the question. The user supplies the
answer by selecting the menu choice with the mouse and clicking on the “OK” button, or
by simply double-clicking on the menu choice.

Whenever an expert system must enter a consultation mode to ask for data from
the user, it is important to constrain the questions so that they pertain only to the current
analysis, rather than asking about data from a decision tree branch that can be excluded
from the search because it is irrelevant [Shortliffe 1976]. The same consideration applies
to complex calculations that must be performed to transform data into a form that can be
properly analyzed (e.g., Fourier analysis). In order to meet real-time constraints, the
system must not perform time-consuming calculations of values that are not essential to
the current analysis.

a(X) :- Al, b(X).
a(X) :- A2, c(X).
a(X) :- A3, d(X).
a(diagnosisl).

1
false

false

false

v
diagnosis 1

m‘lgure 4. A generic decision tree and Its Prolog representation

7

In a traditional forward-chained diagnostic system all or most data values must be
asserted in working memory prior to the activation of any rules. Subsequently, rule firing
is initiated causing relevant rules to be activated by a subset of the data in working
memory [Forgy 1982]. Assertion of all data values in SHARP would require asking the
user all possible questions and performing ail possible data transformations before any
rule was fired. Since this would be bothersome to the user and inefficient, a forward-
chained inference engine was not a viable option for SHARP.

In order to circumvent this constraint, the rules were written in Prolog, a goal-
driven backward-chained language, Previous versions of SHARP employed a LISP-
based inference engine and the knowledge base had a significantly different design from
the current implementation. Although a forward-chained language such as NASA’s
CLIPS can be used to obtain data in a more efficient manner (e.g., by simulating
backward-chaining) [Hayes-Roth 1983], this tends to dilute the advantages of forward-
chaining [Winston 1984] as well as increasing the number of rules significantly. For this
application, it was therefore preferable to simply use a backward-chained rule language.

In the Prolog knowledge base, each node of the decision tree is represented by a
single rule. Figure 4 shows the relationship between a generic decision tree and the
Prolog implementation of that tree. In the decision tree in figure 4, Al, A2, and A3 are
decisions to be evaluated, such as “IS the telemetry value for channel X out of limit?”, or
“IS there bad weather at the DSN station?”. B, c, and d are other subtrees of the same
form as shown in the figure, that are invoked if one of the Al -A3 are true. “Diagnosis”
is the default diagnosis that is concluded if Al -A3 are all false. Although only one binary
decision is made at each node, there may be multiple data values tha~are examined in
order to arrive at that decision. Thus Al -A3 each represent one or more goals to be
evaluated. These goals may include calls to C functions that will return the values of

telemetry, predicts, or SOE information, or ask the user for a data value.

To invoke the Prolog rules in figure 4, the goal a(X) is called (where X is an un-
bound variable). If Al, A2, or A3 is true, then b(’X), c(X), or d(X) is called respectively,
passing X on to be instantiated by one of the rule subtrees. When a diagnosis is deter-
mined it is unified with X, making it accessible by the top level rule that originally called
a(X),

The Prolog knowledge base (KB) is embedded in a C program. Whenever a
complete set of telemetry values is received from the GDS(approximately every 15 sec-
onds, under ideal conditions), the main C program stores the values in global C
structures for later retrieval. Then C invokes the Prolog KB by calling an interface func-
tion that calls the top level Prolog goal. The rules are evaluated in the manner described
above. If a data value is needed in order to make a decision and the value is available
from an on-line data source, a C function is called directly from the Prolog rule to retrieve
the required value. If a decision requires a value that is not avaiiabie on-iine, the ruie
caiis a C function that consuits the user for the answer by popping up a query window. At
that point all telemetty processing and KB inferencing is suspended untii the user re-
sponds with an answer. When the user inputs an answer, the C function that popped up

8

,

the query window will return the answer to the Prolog rule that called it, and the rule will
then continue on with its evaluation of the current decision node. Note that the suspen-
sion of all processing is achieved by virtue of the fact that control will not return to the
Prolog rule until the C query function has terminated, and the main C function cannot
continue its execution until the Prolog KB has terminated execution,

Each time a decision tree node is visited, the identifier of the rule associated with
that node is recorded in the KB. If the rule eventually fails, the identifier is modified to
indicate that the node is false. Upon completion of inferencing the user can request an
explanation of the steps taken in the diagnosis process. In response to this request, the
list of recorded nodes from the most recent diagnosis is translated into English and out-
put to the user in the order in which the nodes were visited.

Occasionally the rules will require that some action be taken in order to attempt to
fix a problem that has been diagnosed by the rules, and the result of the fix must be
evaluated to determine if any other action is required. For example, if it has been deter-
mined that it is raining at the DSN station, then the user must request the station to turn
on a blower to evaporate the moisture at the antenna. If the problem is fixed by the action
then the KB terminates inferencing and control is returned to the main C function. If the
problem is still not fixed by the action, then a different corrective action must be attempt-
ed, or the KB will determine that the problem cannot be currently fixed. The only way for
the KB to determine whether the problem has been fixed is by examining the latest te-
lemetry after the action has been petiormed and the effects of the action are visible in
te/ernetry. Thus while KB processing is suspended pending the execution of the action,
the telemetry must continue to flow through the system, without being evaluated, until the
effects of the action (if any) show up in telemetry.

When this type of action must be performed, the Prolog rule first suspends KB
inferencing by adding (asserting) two facts to the KB, one to indicate that the KB is in a
suspended state, and the other to specify the goal to be called upon resumption of
processing. Next a C function is called which pops up a window with a message asking
the user to perform the required action. Unlike the C function for simple user-queries, the
action-request function spawns a new process to pop up the window, which executes
independently from the other SHARP processes. The action-request function can then
terminate and return control to the calling Prolog rule while the pop-up action-request
window is still displayed and waiting for user input. The Prolog rule then completes
execution and control returns to the main C function. When the action has been per-
formed and enough time has passed so that its effect will be visible in telemetry, the user
clicks on the “OK” button in the action-request window, signifying that the KB can resume
inferencing o

While the KB is in the suspended state, the main C function resumes normal pro-
cessing, reading telemetry from the GDS and calling Prolog whenever a complete
telemetry set is received. It is important that KB inferencing is not restarted until the state
of the Telecom system is changed by the action that has been requested. When the
top-level Prolog rule is called while in the KB suspended state (as determined by the

9

,.

=.

previously asserted fact) the rule first calls a C function to see if the user has responded
to the action request. If the user has responded, indicating that the action has been
performed, then the the previously asserted goal (to be executed upon KB resumption) is
retrieved from the KB. The goal is then called, which has the effect of returning infer-
encing to the point where execution had left off just prior to the suspension of the KB. At
that point the current telemetry values should reflect the effects of the requested action,
so the KB can continue its diagnosis using the latest available data.

If the user has not yet responded to the action-request window, then the top-level
rule does nothing further and returns control to the main C function. This causes the
latest set of telemetry to be ignored by the KB, because it does not yet show the effects
of the action to be performed, and thus does not reflect the state of the Telecom system
that the rules expect to exist upon resumption of inferencing.

BENEF1-13 OF SHARP IN MISSION OPERATIONS

SHARP enables faster response time in the detection and diagnosis of Telecom
anomalies, due to two factors. First, since SHARP automates the knowledge of an expert
Telecom analyst, the Telecom expert will no longer need to be consulted for problems
that are within SHARP’s domain. This will eliminate the time needed to contact the expert
and apprise him of the situation. Secondly, the actual time required to detect the anomalY
and then to diagnose the cause of the problem and recommend how to fix it, will be much
faster than any human operator or domain expert could petiorm. t;

Faster response time will result in increased safety for the spacecraft, since any
interruption in communication with the spacecraft could allow serious spacecraft anom-
alies to go undetected and uncorrected, possibly leading to the loss of the spacecraft, as
occurred in the case of the Mars Observer. Also, even in the absence of serious space-
craft anomalies, faster response time means that any downtime of the Telecom link will
be minimized, thus minimizing the loss of both science and engineering data transmitted
from the spacecraft.

SHARP wiil also enable reduction in operational staff size to take place with min-
imal impact. Past interplanetary missions have staffed the function now carried out by
SHARP with a full-time Telecom expert. More recent missions have been under signifi-
cant pressure to reduce costs, causing them to eiiminate a variety of previously funded
positions, including dedicated Telecom support. They have reiied instead on ad-hoc
support, drawing from the institutional pooi of expertise on an as-needed basis. SHARP
reduces their dependence on this sometimes cumbersome approach, enabiing mission
controllers to derive on-line consultation from SHARP for ail but the most unusual Teie-
com problems.

Also, since SHARP automates Telecom anomaiy detection knowiedge, routine
monitoring can be performed by operators whose primary expertise is not in Teiecom.

10

This means that a single person can monitor both Telecom and other non-Telecom sub-
systems, allowing additional reductions in Telecom staff size. For Galileo this is
important because a single operator will sometimes be required to monitor multiple sub-
systems concurrently due to staffing limitations.

Another benefit of SHARP is that it will help to train inexperienced analysts by
taking them step by step through the diagnosis process, via the knowledge base
explanations. For the experienced analyst SHARP will serve as a reminder of what pa-
rameters are of importance in a particular analysis, and what actions are appropriate in
order to solve a given problem. A final benefit will be the preservation of Telecom ex-
pertise in the SHARP knowledge base, after key Telecom experts have retired or moved
on to other missions.

*.
LESSONS LEARNED IN THE TRANSITION TO OPERATIONAL USE

As discussed previously, SHARP was originally developed for the Mars Observer
mission. One week after the delivery of SHARP ail communication with the spacecraft
was inexplicably lost. At that time, the mission control team had not yet had a chance to
fully integrate the application into their monitoring routine. However, during SHARP’S
brief period of exposure to operations personnel we gained some insight as to the po-
tential areas where SHARP could be improved.

One area for improvement is the interactive consultation mode. Whe~ the system was
connected to the real-time telemetry source it became apparent that the volume of data,
(approximately one telemetry set per fifteen seconds) could cause frequent activation of
pop-up user queries during anomalous situations, This is because the decision tree is

invoked each time a telemetry set is received. In the original implementation, there were
a total of eighteen possible questions in the KB that could be asked of the user, not
counting the action request queries. Of course not all of these questions, or even a ma-
jority of them, would ever be asked during the diagnosis of a single telemetry set. But
even one question every few minutes would be bothersome to the user since it would
require constant attention. Pop-up queries suspend further inferencing until the user re-
sponds, and any new incoming telemetry is saved to a queue. The queue will hold about

one hour’s worth of telemetry. When the queue reaches its full capacity, the next telem-
- etry set causes the system to clear the queue by simply discarding the oldest thirty

minutes of data. So if the user leaves the workstation for an hour or more after a question
has been posed without answering the question, when they return they will have at least
thirty minutes of telemetry backed up in the queue which will have to be processed. The
actual SHARP processing time for the queued data will be much faster than thirty min-
utes, but if there is an average of one question per twenty telemetry sets say (about one
question for every five minutes of data), then there will be six questions that the user has
to respond to before the system will begin processing the most current telemetry. Clearly
this is a burden on the user that should be avoided.

11

We are making adjustments to the Galileo knowledge base that will reduce the number
of user queries. Some of the data values that were not available in telemetty for Mars
Observer are now available in Galileo data, and a few other unavailable values can now
be calculated from on-line data. This will allow the total number of possible questions to
be reduced to ten. Two of these are about conditions that will persist over time (bad
weather and precipitation), so they need only be asked at most once during the extended
time interval that such conditions would continue to exist (the exact length of the intervals
is to be determined). In addition, instead of analyzing every telemetry set, and possibly
invoking user queries as often as every fifteen seconds, we will sample the telemetry so
that the knowledge-based detection and diagnosis is invoked once every two minutes.
After beta-testing is complete, the interval between samples will be increased if moni-
toring constraints allow, or decreased if anomaly response time is inadequate. A longer
time between telemetry sampling will require fewer invocations of the KB, which will de-
crease the likelihood that the user will be queried for data.

Another problem in querying the user was noticed during testing. If an anomaly ap-
peared, successive sets of telemetry contained the same data, and therefore invoked the
same path in the decision tree until the problem was fixed. If there were any user queries
in that path, the user would have been asked the same questions repeatedly.To prevent
this from happening, a redundant proof-tree path detection step was added to the rules.
When a diagnosis is obtained, the path of decision nodes that led to that diagnosis, along
with the key parameter vaiue that was checked at each node, is now stored in the KB as
a Prolog list. Whenever a user-query is required, the rules first check to see if the current
partial node path is a leading subset of the path from the last diagnosis, and the key
parameter vaiues of corresponding nodes are equal. If so, then the current anomaly is
assumed to be the same as the last anomaiy, the user is not queried, and the KB aborts
and returns controi back to the top-levei C function without any further processing. This
avoids asking the user redundant questions about an anomaly that has aiready been
diagnosed, and it improves system throughput by preventing unnecessary inferencing.

OTHER NASA SYSTEMS FOR MONITORING AND DIAGNOSIS

Other monitoring and diagnosis systems have been developed within NASA for a
number of reiated applications. The evolution of each system has been driven predomi-
nantly by the specific domain requirements, resulting in both substantial and subtle
differences.

The MARVEL system, aiso developed at JPL [Schwuttke 1992, Schwuttke 1994],
features muitipie distributed processes, including up to five cooperating expert systems.
it has been operational on a network of UNIX workstations since 1989. MARVEL is used
by both the Voyager and Galileo missions, providing automated monitoring and data-
driven diagnosis of these spacecraft at both the subsystem and system Ieveis and pro-
viding a variety of additional features such as trend anaiysis and automatic report
generation that contribute to productivity enhancement and workforce reductions. The

12

two applications of MARVEL are each fairly application specific, with approximately
eighty percent of each system being tailored to unique mission requirements. The auto-
mated monitoring and hierarchical alarming in MARVEL is currently being implemented
in a highly generic, user-customizable product.

The Real-Time Data Systems (RTDS) at Johnson Space Center uses heuristic,
associative reasoning to support automated monitoring and diagnosis in the Space Shut-

“ tle Control Center [Muratore 1989, Heindel 1990]. RTDS is an application environment
that provides telemetty data acquisition, management, and display as well as diagnosis
functions. It has been on-line since 1986, focussing predominantly on real-time moni-
toring, and consisting of a distributed set of applications in a large network of workstation.
RTDS has a capacity for monitoring over 4000 telemetry parameters, As a result of the
overwhelming real-time demands on this system, there has been significantly less effort
on automated diagnosis in RTDS than in some of the other NASA applications, as di-

=. agnostic functions tend to be the most computationally expensive, This system has
recently been adopted as a standard for future automated monitoring and diagnosis sta-
tions in the Space Shuttle Control Center.

The CLEAR and GenSAA expert systems [Hughes 1991] support mission opera-
tions at Goddard Space Flight Center. CLEAR is a forward-chaining rule-based system
that detects anomalies in the telecommunications link between the COBE and TDRSS
spacecraft. Detected anomalies are portrayed graphically to the human operator. Gen-
SAA is a general shell that was influenced by CLEAR. In addition to the forward-chaining
rule-based systems approach used in CLEAR, GenSAA provides a workbench environ-
ment for developing applications as well as tools for linking the system w;th real-time data
sources.

SUMMARY

SHARP automates the knowledge of an expert in the domain of spacecraft
telecommunications. The knowledge base uses backward chaining to detect and diag-
nose Telecom anomalies by examining telemetry and other on-line data, and by
obtaining information from the user through an interactive consultation mode. Some un-
expected problems with the consultation mode were discovered during testing, but the
latest version of SHARP for Galileo mitigates these problems to some extent. SHARP
makes workforce reductions less painful by reducing the dependence on Telecom do-
main experts, and by allowing mission analysts from other subsystem domains (e.g.,
attitude control, power) to perform Telecom monitoring and analysis. SHARP also pro-
vides faster diagnosis and correction of anomalies than previously possible..

ACKNOWLEDGMENT
The work described in this paper was carried out by the Jet Propulsion Laboratory, Cali-

13

“.

.

. .

fornia Institute of Technology under a contract with the National Aeronautics and Space
Administration. The authors wish to acknowledge the efforts of Scott Burleigh on the te-
lemetry interface and the innovation of Mark James on prior versions of SHARP. The
authors appreciate support from the NASA Office of Advanced Concepts and Technolo-
gy and JPL’s Multimission Operations Support Office.

REFERENCES

D. Atkinson and M. James, “Spacecraft Health Automated Reasoning Prototype: Ap-
plications and Recent Progress,” Proceedings of First International Conference on
Fielded Applications of Intelligent Software Technologies (Toulouse-Labege, France,
1992).

C. Forgy. “Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem.” Artificial Intelligence 19, 1982, 17-37.

F. Hayes-Roth. Bui/ding Expert Systems. Reading Mass.: Addison-Wesley, 1983, pp.
172-215.

T. Heindel and J. Muratore, “Advanced Automation in Space Shuttle Mission Control,”
Proceedings of the Second International Symposium on Space Information Systems,
American Institute of Aeronautics and Astronautics (Pasadena, CA, 1930), pp. 641-650.

P. Hughes and E. Luczak, “GenSAA: Advancing Satellite Monitoring with Expert Sys-
tems,” AIAA Computing in Aerospace 8: A collection of Technical Papers, Vol. 1,

(American Institute of Aeronautics and Astronautics, Baltimore, MD, 1991), pp. 293-303.

R. Martin (cd.), D. Atkinson, M. James, D. Lawson, H. Porta. “Spacecraft Health Auto-
mated Reasoning Prototype (SHARP): A Report on SHARP and the Voyager Neptune
Encounter”. Publication 90-21. Jet Propulsion Laboratory. Pasadena, CA. August 1990.

J. Muratore, T. Heindel, T. Murphy, A. Rasmussen and R. McFarland. “Space Shuttle
Telemetry Monitoring by Expert Systems in Mission Control,” Innovative Applications of
Artificial intelligence, H. Schorr and A. Rappaport, Editors, (AAAI Press, 1989), pp. 3-14.

U.M. Schwuttke, A.G. Quan, R. Angelino, et al, “MARVEL: A distributed Real-time Mon-
itoring and Analysis Application” Innovative Applications of Artificial intelligence 4, A.
Scott and P. Klahr, Editors, (AAAI Press, 1991), pp. 89-106.

U.M. Schwuttke, A.G. Quan, and J.R. Veregge, “Cooperating Expert Systems for the
Next Generation of Real-time Monitoring Applications “, to appear in the Proceedings of
the International Conference on Expert Systems for Development, March 1994.

14

●‘!

E.H. Shortliffe, and B.G. Buchanan. Computer-based medics/ cons,dtatkm; MYC/N.
New York: American Elsevier, 1976.

P. Winston. Art#ic~a/ /nte//igence. Reading Mass: Addison-Wesley, 1984, pp. 152-153.

..-

15

